Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

نویسندگان

  • Wolf Hanke
  • Matthias Witte
  • Lars Miersch
  • Martin Brede
  • Johannes Oeffner
  • Mark Michael
  • Frederike Hanke
  • Alfred Leder
  • Guido Dehnhardt
چکیده

Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Approach to the Control of Vortex Induced Vibrations of Circular Cylinders with a 2-D Van der Pol Model for Structural Oscillator

In the present paper, a new 2-D Van der Polstructural oscillator model is introduced for the vortex induced vibrations of circular cylinders.The main purpose of this task is to control the recently introduced model by means of modern control definitions in state space. In order to control the system, the whole model is linearized about its equilibrium point by deriving state-space matrices. The...

متن کامل

Perturbation of Vortex Induced Vibrations on a Square Section Cylinder

This paper addresses the vibration of a square section cylinder due to the alternate vortex shedding at moderate Reynolds number (3500). The numerical investigation is focused on the perturbation of the vortex shedding in order to decrease the amplitude of the vibrations at lock-in. By analyzing the unsteady flow results, we show that a control technique spatially localized at the surface of th...

متن کامل

Vortex-induced vibrations of a long flexible cylinder in shear flow

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D=200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake...

متن کامل

Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder

A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2010